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Abstract

The weather research and forecasting (WRF) model and a combination of the

regional spectral model (RSM) and the Japanese Meteorological Agency Non-

Hydrostatic Model (NHM) were used to dynamically downscale selected

CMIP5 global climate models to provide 2-km projections with hourly model

output for Puerto Rico and the U.S. Virgin Islands. Two 20-year time slices

were downscaled for historical (1986–2005) and future (2041–2060) periods fol-
lowing RCP8.5. Projected changes to mean and extreme temperature and pre-

cipitation were quantified for Holdridge life zones within Puerto Rico and for

the U.S. Virgin Islands. The evaluation reveals a persistent cold bias for all

islands in the U.S. Caribbean, a dry bias across Puerto Rico, and a wet bias on

the windward side of mountains within the U.S. Virgin Islands. Despite these

biases, model simulations show a robust drying pattern for all islands that is

generally larger for Puerto Rico (25% annual rainfall reduction for some life

zones) than the U.S. Virgin Islands (12% island average). The largest precipita-

tion reductions are found during the more convectively active afternoon and

evening hours. Within Puerto Rico, the model uncertainty increases for the

wetter life zones, especially for precipitation. Across the life zones, both

models project unprecedented maximum and minimum temperatures that

may exceed 200 days annually above the historical baseline with only small

changes to the frequency of extreme rainfall. By contrast, in the U.S. Virgin

Islands, there is no consensus on the location of the largest drying relative to

the windward and leeward side of the islands. However, the models project the

largest increases in maximum temperature on the southern side of St. Croix

and in higher elevations of St. Thomas and St. John.
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1 | INTRODUCTION

Islands in the northern Caribbean are vulnerable to
extreme weather-related disasters. The projected
increase in global greenhouse gases (GHGs) depicts a
world with an increasing threat of widespread drought
(Dai, 2013) and stronger tropical cyclones with higher
rainfall rates (Knutson et al., 2019a; 2019b). Recently, in
2015, Puerto Rico, located in the northern Caribbean,
experienced one of the most severe droughts within the
island's observational record in 2015 (�Alvarez-Berríos
et al., 2018) and just 2 years later took a direct hit from
Hurricane Maria in which rainfall totals exceeded 30 in.
within some parts of the island (Pasch et al., 2019). Hur-
ricane Maria is one of the deadliest and costliest storms
in U.S. history with an estimated 3,000 deaths (Santos-
Burgoa et al., 2018) and costs exceeding 90 billion USD
(NOAA NCEI, 2019).

These recent disasters are concerning, especially
when they are put into the context of observed and simu-
lated changes within the climate system. Puerto Rico and
neighbouring islands lie at the edge of the convective
zone of the tropics but are projected to experience signifi-
cant reductions in total precipitation (i.e., “drying”) this
century as GHGs and temperatures increase (Neelin
et al., 2006). Lau and Kim (2015) discuss projected
changes in precipitation at the subtropical margins from
an ensemble of global climate models. The study illus-
trates a future climate with more intense tropical convec-
tion organized over a narrower region which in return
favours a drier subtropical atmosphere, especially on the
equatorward side of the subtropical margins as a result of
enhanced subsidence. This large-scale “subtropical” pre-
cipitation decline is considered part of the “dry get drier”
and “upped-ante” phenomenon first proposed by Held
and Soden (2006). He and Soden (2017) caveated the
finding of declining subtropical precipitation by noting
that the drying pattern is primarily limited to over the
ocean. He and Soden (2017) illustrate that this precipita-
tion decline is a response to the continental land-sea
warming contrast, the direct radiative forcing of CO2,
and sea surface temperature pattern changes within the
northwest Atlantic and southeast Pacific. Dai et al. (2018)
further show the reduction in subtropical precipitation is
likely to be a persistent feature in a warmer climate and
not just a transient response to an increase in GHGs.
However, studying future drought events associated with
large-scale changes in the atmosphere becomes compli-
cated for many subtropical islands when also considering
extreme rainfall from tropical cyclones. Warming sea sur-
face temperatures have been correlated with weaker
wind shear within the Caribbean (Kossin and
Vimont, 2007; Vimont and Kossin, 2007; Kossin, 2017),

so the atmosphere is more conducive to producing stron-
ger storms. Additionally, tropical cyclones may intensify
more quickly as the oceans continue to warm
(Emanuel, 2017) and move more slowly (Kossin, 2018),
as observed with Hurricanes Harvey (2017), Florence
(2018), and Dorian (2019). Despite the possibility of
stronger and slower-moving tropical cyclones with
intense rainfall, the Caribbean warrants more attention
as the exposure to long-term drying becomes more likely
as a result of large-scale changes in the atmospheric cir-
culation. These changes within the atmosphere will likely
create additional stresses to vulnerable ecosystems, water
resources, and human well-being.

Numerous studies have attempted to quantify the
projected changes to rainfall and temperature within
the Caribbean as GHGs increase, including analysing
output from coupled global climate models (Karmalkar
et al., 2013; Taylor and Clarke, 2018), high resolution
time-slice global atmospheric models (Hall et al., 2013),
dynamical downscaling (Campbell et al., 2011;
Bhardwaj et al., 2018), and statistical downscaling
(Hayhoe, 2013; Henareh et al., 2016). Generally, these
studies focused on quantifying rainfall and temperature
changes for large regions that grouped multiple small
island states that exhibit similar annual cycles and inter-
annual variability (e.g., Campbell et al., 2011; Hall
et al., 2013; Karmalkar et al., 2013; Taylor and
Clarke, 2018). These studies add value by highlighting
the projected regional and seasonal changes for areas
within the Caribbean. Karmalkar et al. (2013) reviewed
the projected changes from phase 3 of the Climate
Model Intercomparison Project (CMIP3) and regional
climate modelling from UK Hadley Centre modelling
system in PRECIS (Providing Regional Climates for
Impact Studies). Karmalkar et al. (2013) found more
drying for the latter half of the 21st century with the
strongest drying occurring during the early part of the
wet season and within the western half of Caribbean.
However, the magnitude of the drying was less certain,
especially when including output from higher resolution
regional climate models that better resolve the small
island states. Using the more recent global climate
model output from phase 5 of the Climate Model
Intercomparison Project (CMIP5), Taylor and
Clarke (2018) analysed the Caribbean's future climate
when mean global surface air temperatures are 1.5�C,
2.0�C, and 2.5�C above pre-industrial values
(1861–1899). They showed that there is a shift to pre-
dominately drier conditions throughout Caribbean and
an extension of warm spells of up to 70 days that occurs
between 1.5�C and 2.0�C mean global warming.

One shortcoming of many prior modelling studies is
the inability to resolve the terrain that interacts with the
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prevailing trade winds. This interaction is extremely
important because it helps create the large precipitation
and temperature gradients within the islands over short
distances (<10 km). The sharp precipitation gradients
promote a rich mosaic of habitats. Puerto Rico and the
U.S. Virgin Islands are ideal locations to perform high-
resolution dynamical downscaling because these islands
have large precipitation gradients that primarily result
from moist easterly trade winds impinging upon the
island mountains. Puerto Rico's climate includes stark
contrasts—such as the El Yunque rainforest located on
the northeast side within the Sierra de Luquillo moun-
tain range and the Guanica dry forest south of the Cordil-
lera Central mountain range—less than 100 km from

each other and requires finer-resolution modelling to
capture, Figure 1. These sharp contrasts are important to
the distribution of Holdridge ecological life zones defined
using the mean annual biotemperature, mean annual
precipitation, and annual potential evapotranspiration
ratio (Ewel and Whitmore, 1973). Additionally, high-
resolution modelling is needed to simulate the interac-
tion between the easterly trade winds with the Cordillera
Central mountain range which supports organized after-
noon convection on the western side of the island (Jury
and Chiao, 2013). The need for higher-resolution climate
change projections is further supported by recent precipi-
tation trends across Puerto Rico that vary with elevation
(Van Beusekom et al., 2016).

FIGURE 1 Observed ecological

life zones within Puerto Rico (top)

and model representation for the

10-km (left) and 2-km (right) WRF

domains with model terrain height

(contoured in meters)
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Simulating an elevation-dependent climate response
within complex topography requires horizontal grid spac-
ing of 5-km or less (Rasmussen et al., 2011). Recently,
Bhardwaj et al. (2018) used a non-hydrostatic regional cli-
mate model at 2-km horizontal grid spacing to investigate
climate change within Puerto Rico at mid-twenty-first
century following Representative Concentration Pathway
8.5 (RCP8.5). Their study found a diminished mid-
summer drought, which is a temporary dry period during
the rainy season, in the northwestern portion of the
island and less frequent extreme rainfall at sub-daily and
daily time scales. The frequency of occurrence of the
most extreme rainfall in this dynamically downscaled
realization contradicts statistically downscaled projec-
tions within Puerto Rico which show an increase in num-
ber of days for most extreme precipitation
(Hayhoe, 2013). Furthermore, Henareh et al. (2016) use
the statistical downscaling of Hayhoe (2013) to map the
possible ecological effects of climate change for the Hol-
dridge life zones and finds a shift to drier life zones with
the possibility of losing the subtropical rain forests within
Puerto Rico by the end of the century. The statistical
downscaling consensus was drawn from a large ensemble
of GCMs and scenarios, suggesting that the dynamical
downscaled realization from Bhardwaj et al. (2018) could
be sensitive to the GCM, the scenario, and regional cli-
mate model and its configuration. Another possibility is
the statistically downscaled projections may not accu-
rately represent the complex climate, especially with
regards to changing precipitation extremes as both the
stationarity assumption and station density are known
issues with statistical downscaling.

This study is an extension of the Bhardwaj et al. (2018)
study and includes additional dynamically downscaled
high-resolution (2-km) climate change realizations for
RCP8.5, with an overall climate forcing of 8.5 W m−2 by
the end of the 21st century (Riahi et al., 2011). These
simulations downscale multiple GCMs centered on the
mid-21st century using two different regional climate
modelling systems to explore whether additional dynami-
cally downscaled models would corroborate Bhardwaj
et al. This manuscript also complements Henareh
et al. (2016), as we also investigate climate change within
the Holdridge ecological life zones. In this study, high-
resolution dynamically downscaled simulations are eval-
uated against observations to quantify the model errors
and projected temperature and precipitation changes for
the three largest Holdridge life zones within Puerto Rico,
resolved by the RCMs as shown in Figure 1, and for the
U.S. Virgin Islands. This analysis includes quantifying
changes to the mean and extremes within these life zones
in Puerto Rico, including the diurnal cycle and tails of
the distributions where large uncertainties and little

information exist regarding climate change. To our
knowledge this is the first study that provides regional
climate change information for the U.S. Virgin Islands.
In the conclusions, we highlight key points important for
stakeholders considering regional climate change projec-
tions for the U.S. Caribbean islands including uncer-
tainties, modelling challenges, and suggestions to
improve regional climate change projections for the
islands.

2 | MODEL EXPERIMENTS AND
EVALUATION

This study uses two regional climate modelling systems
to downscale select global climate models that partici-
pated in CMIP5. Each regional climate model applied a
unique model configuration to generate projections for
Puerto Rico and the U.S. Virgin Islands at 2-km horizon-
tal grid spacing. Each regional climate model downscaled
two 20-year time slices from two CMIP5 global climate
models (Taylor et al., 2012): a historical time slice
(1986–2005) and a future time slice (2041–2060) for
RCP8.5. Each regional climate model downscaled the
same CMIP5 model for comparison. The future time
period, GHG emission scenario, and model output
parameters archived were selected based on workshop
recommendations from stakeholders within Puerto Rico
and the U.S. Virgin Islands, including ecologists, biolo-
gists, and hydrologists. Included in Table 1 is a

TABLE 1 Mean annual 2-m temperature and precipitation

change from CMIP5 GCMs for mid-century (2041-2060 minus

1986-2005) for RCP8.5 averaged over the U.S. Caribbean

GCM T2 Mean (�C) Precipitation (% change)

CCSM4 +1.3 −23

CNRM-CM5 +1.0 −2

GFDL-ESM2G +1.1 −5

ACCESS1-3 +1.9 −19

CSIRO-Mk-3-6-0 +1.5 −10

FGOALS-G2 +1.3 −2

GISS-E2-R +1.2 −3

HadGEM2-CC +1.6 −31

IPSL-CM5A-LR +1.8 −1

MPI-ESM-MR +1.6 −22

NorESM-M +1.1 −18

Note: Only the first realization from each GCM is shown. The U.S.
Caribbean defined by the high-resolution nest in the top panel of
Figure 2. CMIP5 GCMs in bold are dynamically downscaled over
the U.S. Caribbean.
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comparison of the projected temperature and precipita-
tion changes averaged over the U.S. Caribbean for the
three CMIP5 GCMs downscaled, discussed more below,
as well as eight additional CMIP5 GCMs for the same
20-year time slices. Table 1 is included to provide addi-
tional context given known problems when identifying
regional climate change signals, such as the benefit of
sampling internal “unforced” climate variability with
large ensembles, as in Deser et al. (2012), as well as
potential problems when downscaling a subset of GCMs,
as in Mezghani et al. (2019).

2.1 | Weather research and forecasting
model

One regional climate model used in this study is the
weather research and forecasting (WRF) model version
3.6.1 (Skamarock and Klemp, 2008). The WRF model
was used to dynamically downscale two CMIP5
models: the Community Climate System Model
(CCSM4; Gent et al., 2011) and the Centre National de
Recherches Meteorologiques-CERFACS (CNRM; Vol-
doire et al., 2013). WRF was configured to use a
30–10-2-km simultaneous one-way nest (Figure 2). It is

important to note that CMIP5 models have lower
errors than the prior generation of global climate
models, including the annual temperature cycle of the
Caribbean (Ryu and Hayhoe, 2014). In particular, the
CNRM 20th-century simulations improve the fidelity
of the annual temperature cycle compared to other
CMIP5 models (see figure 5 of Ryu and Hayhoe, 2014)
and simulate the seasonal precipitation cycle that real-
istically reflects both a mid-summer drought and two
precipitation peaks within the Caribbean (see table 3 of
Hayhoe, 2013). Table 1 includes temperature and pre-
cipitation changes for 11 CMIP5 GCMs. For CNRM,
the mean warming for the U.S. Caribbean is 1�C with
small to insignificant drying of −2%. In comparison,
CCSM4 improves the simulation of oceanic features
that affect the natural variability in the Caribbean,
such as El Niño Southern Oscillation (ENSO; Bellenger
et al., 2014) with significant rainfall reduction, −23%,
for RCP8.5 by mid-century with a mean warming of
1.3�C. Finally, the best performing WRF configuration
identified in Wootten et al. (2016) was used in this
study. Some important WRF model options include
applying analysis nudging within the outer two
domains and using a convective parameterization
scheme for the innermost domain to reduce rainfall
bias, as discussed in detail within Wootten et al. (2016).
The following physics options were selected for the
WRF simulations:

• Radiation—RRTMG (Iacono et al., 2008)
• Microphysics—WSM6 (Hong and Lim, 2006)
• Planetary Boundary Layer—YSU (Hong et al., 2006)
• Land Surface—Noah (Chen and Dudhia, 2001)
• Convection—Modified Kain Fritsch (Herwehe

et al., 2014)

2.2 | Regional spectral model and
Japanese meteorological agency non-
hydrostatic model

The second configuration used two different regional cli-
mate models, the hydrostatic regional spectral model
(RSM; Kanamitsu et al., 2010) and the non-hydrostatic
model (NHM; Saito et al., 2006). The RSM downscaled
the global climate models to a 10-km horizontal grid
spacing (Figure 1). RSM uses a scale-selective bias correc-
tion (Misra, 2007), which serves to maintain large-scale
consistency within the regional climate model with scales
resolved within the driving global climate model in a
manner similar to analysis nudging in WRF (Bowden
et al., 2012; Otte et al., 2012; Bowden et al., 2013).

FIGURE 2 WRF (top) and RSM-NHM (bottom) domains.

WRF applies a one-way nest with a 30km-10km-2-km domain.

RSM simulations (10-km) are used as lateral boundary conditions

to the NHM (2-km)
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The RSM was also used to downscale CCSM4 (for com-
parison with WRF), as well as the Geophysical Fluid
Dynamics Laboratory Coupled Physical Model (GFDL-
ESM2G; Dunne et al., 2012). Hayhoe (2013) noted that
GFDL-ESM2G erroneously simulated just one precipita-
tion peak for the U.S. Caribbean—a feature more com-
monly observed in the eastern Caribbean—and this
deficiency adversely affects the downscaled simulations.
Projected changes for the GFDL-ESM2G is closer to that
of CNRM with 1.1�C warming and small rainfall reduc-
tion of −5%. The output from hydrostatic RSM was used
as lateral boundary conditions to the NHM to further
downscale CCSM4 and GFDL-ESM2Gto 2-km. Unlike
WRF, the NHM does not offer a convective parameteriza-
tion scheme, so the comparisons of precipitation are
another a unique aspect of this study. Below is a list of
the RSM and NHM physics.

RSM Physics:

• Radiation—shortwave (Chou and Lee, 1996); longwave
(Chou and Suarez, 1994)

• Microphysics—based on Slingo (1987)
• Planetary Boundary Layer—following Hong and

Pan (1996)
• Land Surface—following Ek et al. (2003)
• Convection—shallow (Tiedtke et al., 1988); deep (Pan

and Wu, 1995)

NHM Physics:

• Radiation—based on Sugi et al. (1990)
• Microphysics—explicit three ice bulk scheme (Ikawa

and Saito, 1991)
• Planetary Boundary Layer—Mellor-Yamada level

3 (Nakanishi and Niino, 2006)
• Land Surface—parameterization following Beljaars

and Holtslag (1991)

2.3 | Model evaluation

For both Puerto Rico and the U.S. Virgin Islands, we only
focus on the model output from the 2-km simulations.
Specifically, each simulation is evaluated within Puerto
Rico for three of the six Holdridge life zones: subtropical
dry forest, subtropical moist forest, and subtropical wet
forest. We do not perform an analysis for the other life
zones within Puerto Rico because the 2-km resolution
does not sufficiently resolve these life zones, including
lower montane wet forest, lower montane rainforest, and
subtropical rain forest. Figure 1 illustrates how the life
zones and the ground elevation are represented in WRF
at 10-km and at 2-km within Puerto Rico. The 10-km

domain cannot resolve important terrain features within
the Sierra de Luquillo and Cordillera Central mountain
ranges, so the model does not sufficiently resolve the
observed ecologically relevant life zones, especially the
subtropical dry and wet forests that provide unique habi-
tats. For example, the subtropical dry forest along the
southern coast is underrepresented at 10-km compared
with 2-km.

The historical monthly maximum and minimum
temperature and monthly accumulated precipitation for
the subtropical dry/moist/wet forests within Puerto Rico
are evaluated against the monthly climatology from the
Parameter-Elevation Regressions on Independent Slopes
Model (�4-km PRISM; Daly et al., 2003) to quantify the
average model bias for each life zone within Puerto
Rico. The PRISM data for Puerto Rico is available only
as a climatological normal calculated for the period
1963–1995. One significant advantage of PRISM for this
study is the ability to evaluate elevation relationships
that are critical to the microclimates within the island,
especially the different life zones. We then quantify and
discuss uncertainty in the downscaled projections for
both temperature and precipitation, including changes
to the diurnal cycle and extremes, for each of the life
zones, which is particularly important for natural, cul-
tural, and water resource managers (e.g., species conser-
vation). The significance of the projected changes is
calculated using a two-sided non-parametric Mann–
Whitney U-test (Wilks, 2006) at the 95% confidence
level. This test does not assume the distribution is nor-
mal, and uses ranks to assess if the data, simulated tem-
perature or precipitation, is significantly shifted higher
or lower in the future period.

Unlike Puerto Rico, gridded rainfall and temperature
products like PRISM are unavailable for evaluation within
the U.S. Virgin Islands: St. John, St. Thomas, and
St. Croix. Here we use station climatological normals (U.S.
Climate Normals Data from 1981–2010; Arguez
et al., 2012) to evaluate the 2-km downscaled mean tem-
perature and accumulated precipitation. We then quantify
the island average projected changes to annual average
maximum and minimum temperature and accumulated
rainfall. In addition, projected temperature and precipita-
tion changes for each island are shown to highlight areas
with large differences as well as areas with similarities.

3 | RESULTS

3.1 | Puerto Rico—subtropical dry forest

The subtropical dry forest region is located on the south-
southwestern side of Puerto Rico in the shadow of the
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central mountains with annual rainfall totals less than
1,000 mm. The dry forests in Puerto Rico are small in
stature, and they have low diversity, productivity, and
above ground biomass (Murphy et al., 1995). Dry forests
will likely be sensitive to future changes in rainfall,

which will also likely alter species distribution and eco-
system processes within this forest system (Allen
et al., 2017).

Figure 3 shows distributions of monthly average daily
minimum and maximum temperature from the historical
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and RCP8.5 regional climate model realizations averaged
over the subtropical dry forest. Figure 3 includes the
model biases relative to PRISM and the mean projected
changes for both maximum and minimum temperature.
Both WRF simulations have the smallest bias (less than
<0.3�C) for minimum temperature. In comparison the
RSM-NHM minimum temperature bias is approximately
+2.0�C for the downscaled CCSM simulation
and − 2.0�C for the GFDL simulation. The GFDL simu-
lation downscaled using RSM-NHM depicts a very dif-
ferent shape in the distribution of both minimum and
maximum temperatures with a maximum temperature
bias of −7.6�C. In particular, the temperature distribu-
tion for the GFDL-RSM-NHM simulation does not dis-
play the characteristic bimodality as found in the other
realizations, which is found within the observations
(not shown). The large cold bias in the maximum tem-
peratures for the GFDL-RSM-NHM simulation is con-
cerning and will be discussed in more detail when
looking at precipitation errors. There is also a cold bias
for maximum temperature for the other three down-
scaled realizations, but those biases are smaller, ranging
from −2.2�C to −3.3�C. In general, the downscaled sim-
ulations have a warm bias at night and a cold bias dur-
ing the day, and this persists between regions as seen in
Table 2. The cold bias during the day may be a direct
result of the SSTs. The downscaled realizations use SSTs
from the driving global model, and SST in each of these
models has a cool bias compared to observations within
this region (see figure 4 of Ryu and Hayhoe, 2014).
Additionally, there is also a larger diurnal temperature
range for the WRF simulations compared to the RSM-
NHM simulations. As for the projected changes, the
change for WRF exceeds the model bias with mean
increases in minimum temperature of 1.4�C and 1.2�C
for the CCSM and CNRM realizations, respectively. The
CCSM downscaled with RSM-NHM projects comparable
changes to minimum temperatures of 1.4�C, despite the
larger bias. The mean increase for maximum tempera-
ture for CCSM-WRF, CCSM-RSM-NHM, and CNRM-
WRF is between 1.2 and 1.4�C, comparable to that for

minimum temperature. Accordingly, the diurnal cycle
within the subtropical dry forest is projected to be
largely unchanged (Figure S1).

Alarmingly, unprecedented heat may prevail
throughout the subtropical dry forest by 2050. Figure 4
shows the number of days per year that are projected to
exceed the warmest day in the historical simulation for
maximum and minimum temperature. This analysis
examines each calendar day in the 20-year historical
period and determines the maximum temperature for
that day from the hourly model output. Then, the tem-
peratures for each calendar day in the future period is
compared against the maximum for the same calendar
day from the 20-year historical period to determine the
number of exceedances of the historical maximum at
each grid point within the subtropical dry forest. An
average is calculated for all grid points within the sub-
tropical dry forest. Figure 4 shows the number of
exceedances for each of the future years, which illus-
trates the interannual variability in the number of days
that exceed the historical baseline for minimum and
maximum temperatures. The median from all the reali-
zations generally exceeds 100 days per year with for
both maximum and minimum temperature. All realiza-
tions indicate exceptional years with more than
150 days for both maximum and minimum tempera-
tures. We also note larger consistency between the
downscaled realizations for minimum temperatures
compared to maximum temperatures. Considering that
the mean change for both mean maximum and mini-
mum temperature is <1.5�C within the island, which is
the goal of the Caribbean Community (Taylor and
Clarke, 2018), these results highlight unprecedented
temperature extremes throughout the year. Having
daily future maximum and minimum temperatures in
the future exceed the historical baseline more than
100 times per year will create significant stress on both
the subtropical dry forest ecosystem and people in this
region.

There is some consensus on how mean precipita-
tion will evolve within the subtropical dry forest as

TABLE 2 Maximum and minimum 2-m temperature bias and change for each high-resolution RCM simulation averaged over the

dry Forest (DF), moist Forest (MF) and wet Forest (WF)

GCM

TMIN bias (�C) TMAX bias (�C) TMIN change (�C) TMAX change (�C)

DF MF WF DF MF WF DF MF WF DF MF WF

CCSM-WRF +0.30 +0.17 +0.41 −2.18 −2.50 −2.79 +1.40 +1.36 +1.34 +1.34 +1.56 +1.70

CCSM-RSM-NHM +1.97 +1.48 +1.36 −2.16 −2.86 −3.39 +1.44 +1.48 +1.39 +1.44 +1.47 +1.56

CNRM-WRF +0.02 -0.19 +0.13 −3.33 −3.06 −3.39 +1.16 +1.18 +1.13 +1.25 +1.14 +1.16

GFDL-RSM-NHM -1.98 −2.04 −1.74 −7.67 −8.23 −8.81 +1.76 +1.63 +1.52 +1.87 +1.75 +1.65

8 BOWDEN ET AL.



GHGs increase. Figure 5 shows the distribution of
monthly precipitation for both the historical period and
RCP8.5. There is a dry bias in both WRF simulations
and in the CCSM-RSM-NHM simulation. The bias is
larger for the CCSM simulations from both regional cli-
mate models and smallest for CNRM-WRF simulation.
Notably, CCSM-WRF is the only simulation that does
not simulate rainfall exceeding 200 mm month−1. These
results illustrate that using different global and regional
models increases uncertainty for precipitation extremes
in this region. Despite differences in the distributions,
CCSM-WRF, CNRM-WRF, and CCSM-RSM-NHM
reflect a reduction in mean rainfall between 18–20%.
The mean changes in CNRM-WRF and CCSM-RSM-
NHM are more sensitive to changes in extreme rainfall
compared to CCSM-WRF. GFDL-RSM-NHM was omit-
ted from this analysis because this simulation includes a
very large wet bias, exceeding 100 mm month−1, as well
as the strong cold bias previously discussed.

The hourly model output enables quantifying changes
to sub-daily precipitation, including the diurnal cycle and
short-duration precipitation extremes. Precipitation
extremes, here defined as events when the daily maxi-
mum precipitation rate (mm hr−1) exceeds the 99th per-
centile of the historical period, are shown in Figure 6.
These results indicate that the projected change in the
frequency of extreme rainfall events is insignificant when
averaged over the life zone. Figure 6 further suggests that
the frequency of flash flooding (resulting directly from
extreme precipitation) may not change in the absence of
tropical storms and hurricanes, which are poorly simu-
lated in our limited domain. However, flash flooding
events could increase if there are larger gaps between

precipitation events because of a drier land surface which
would favour quicker run-off.

There are also notable projected changes in the diur-
nal cycle (Figure 7). Except for GFDL-RSM-NHM, the
models show a consistent rainfall peak during the after-
noon/evening hours in both the historical period and
RCP8.5. One characteristic of the projected drying within
the subtropical dry forest is a reduction in afternoon/eve-
ning rainfall, likely from convection. The major differ-
ence between RSM-NHM and the WRF simulations is
the timing of the peak rainfall, occurring later in the eve-
ning for RSM-NHM.

3.1.1 | Puerto Rico—subtropical moist
forest

The subtropical moist forest region is primarily located
in transition zone between the coast and higher eleva-
tions with a more concentrated moist forest area on the
north and east side of the island (Figure 1). Annual
rainfall totals are typically 1,000–2000 mm. This is the
largest life zone, covering around 59% of Puerto Rico,
and it is a prime region for deforestation because cli-
matic conditions are ideal for growing a variety of
crops (Miller and Lugo, 2009). The subtropical moist
forest includes many microhabitats with very diverse
species. For instance, the karst region on the northern
edge of Puerto Rico harbours more than 1,300 species
of plants and animals (Lugo et al., 2001). Climate
change poses a risk to the ecosystems and ecosystem
services, such as shade-grown coffee, in these subtropi-
cal moist forests.
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FIGURE 4 Boxplot of the

annual count of days within the

subtropical dry forest of Puerto Rico

for each future year when the daily

(a) maximum 2-m temperature and

(b) minimum 2-m temperature

exceeds the same calendar day

maximum temperature from the

historical period for each RCM

simulation. The number of days is

averaged over the subtropical dry

forest. The projected changes are

significant at the 95% confidence

level using the Mann–Whitney U-test

(p-values < .001)
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Figure 8 shows distributions of daily average mini-
mum and maximum temperature from the downscaled
simulations. Similar to the dry forest, see Table 2 for
regional comparison, the WRF simulations have the
smallest minimum temperature biases of ±0.2�C relative
to PRISM. In comparison, the RSM-NHM minimum
temperature bias is approximately +1.2�C for the

downscaled CCSM simulation and − 2.0�C for the
GFDL simulation. Excluding the GFDL-driven simula-
tion, the simulated maximum temperature bias is
between −2.5�C and −3.1�C. The projected change for
both WRF simulations and CCSM-RSM-NHM exceed
the model bias with a projected increase in minimum
temperature of 1.2–1.5�C. The projected increase in
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FIGURE 5 Distribution of monthly precipitation (mm) for the subtropical dry forest region. The historical and future are shown as

solid and dashed lines respectively for (a) CCSM-WRF, (b) CNRM-WRF, (c) CCSM-RSMNHM, (d) GFDL-RSM-NHM. Included in each
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projected changes are significant at the 95% confidence level using the Mann–Whitney U-test (p-values < .001)
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maximum temperature ranges from 1.1 to 1.6�C. The
range of projected temperature change is larger for the
subtropical moist forest relative to the subtropical dry
forest. There is more uncertainty in the mean warming
within the subtropical moist forest compared to the sub-
tropical dry forest, which is associated with a weaker
consensus in the projected change in the diurnal tem-
peratures (Figure S2).

Figure 9 shows the number of days per year that
exceed the warmest day in the historical simulation on
average for the subtropical moist forest. CNRM-WRF
has a mean temperature change of 1.1�C with a median
of 100 days of unprecedented heat per year, while
CCSM-WRF projects a mean change of 1.6�C
and > 150 days per year, which illustrates how small
changes in the projected mean temperature can result
in extreme heat given the small daily temperature vari-
ability in a tropical climate. All simulations project at
least 50 days per year of unprecedented temperatures
at 2050 relative to the historical period. Overall, down-
scaled model projections for the largest life zone in
Puerto Rico indicate a significant change in unprece-
dented heat with some projections exceeding 200 days
for some future years.

Figure 10 is the distribution of monthly precipitation
for the historical and RCP8.5 simulations. As anticipated,
annual rainfall totals are larger for the subtropical moist
forest compared to the subtropical dry forest, see Table 3
for regional comparison, but there remains consistent dry
bias of −19 mm month−1 to −44 mm month−1. The out-
lier is the extreme wet bias in GFDL-RSM-NHM, exceed-
ing 200 mm month−1. The WRF precipitation biases are
smaller than the other models. The simulation with the
smallest bias is CCSM-WRF, which has the largest pro-
jected reduction in annual rainfall (23%). The CNRM-
WRF simulation projects the smallest reduction (9%).
The CCSM-RSM-NHM simulation despite having a larger
bias is in between the two WRF simulations, annual rain-
fall reduced by 17%. The CCSM-WRF and CCSM-RSM-
NHM project the largest reduction in precipitation,
suggesting a stronger sensitivity to the driving global cli-
mate model than the regional climate model. Overall,
there is greater uncertainty in the magnitude of change
within the subtropical moist forest relative to the sub-
tropical dry forest.

There is a slight reduction in the number of days per
year with extreme rainfall qualitatively like the subtropi-
cal dry forest (Figure S3). There is also a consistent pro-
jected reduction in the afternoon and evening rainfall
(Figure S4), as in the subtropical dry forest. Overall, there
is consistency between sub-daily changes in the diurnal
cycle and precipitation extremes between the subtropical
moist forest and subtropical dry forest for different global
and regional climate models.

3.1.2 | Subtropical wet Forest

The subtropical wet forest region is found in much of the
higher elevations within Puerto Rico (Figure 1). This life
zone has high annual rainfall totals of 2000–4,000 mm.
Abundant precipitation supports lush vegetation and a
high diversity of species. The runoff from the subtropical
wet forest is an important source of freshwater for
populations near the coastal areas (Miller and
Lugo, 2009).

Figure 11 shows distributions of daily average mini-
mum and maximum temperatures from the historical
and RCP8.5 regional climate model realizations. Pre-
dictably, GFDL-RSM-NHM remains an outlier, so it is
not discussed. The remaining simulations have a warm
bias for minimum temperature. CCSM-RSM-NHM has
the largest warm bias for minimum temperature of
1.4�C compared to 0.4�C and 0.1�C for CCSM-WRF and
CNRM-WRF, respectively. The smaller bias in WRF for
minimum temperature is consistent with the other life
zones. Maximum temperature is biased cold, ranging
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from −2.8�C for CCSM-WRF to −3.4�C for both
CNRM-WRF and CCSM-RSM-NHM. The cooler day-
time temperatures and warmer night-time tempera-
tures indicate the regional climate models are
consistently underestimating the diurnal temperature
range across different life zones. The projected change
from the three realizations depict an increase in mini-
mum temperature of 1.1–1.4�C and 1.2–1.7�C for maxi-
mum temperature. The projected maximum
temperature changes are slightly larger than the mini-
mum temperature change, especially for CCSM-WRF.
The projected change in the diurnal cycle confirms that
maximum temperature increases more during the
afternoon and evening hours for CCSM-WRF com-
pared to CNRM-WRF and CCSM-RSM-NHM
(Figure 12), and hence escalating uncertainty in
changes to the diurnal temperature range. Similar to
the other life zones, there is a substantial projected
increase in unprecedented daytime and night-time
temperatures exceeding 200 days for some future years
(Figure S4).

Figure 13 shows the distribution of monthly precipi-
tation from the historical and RCP8.5 simulations aver-
aged over the subtropical wet forest. The simulations all

show a dry bias, except for GFDL-RSM-NHM. CNRM-
WRF has the smallest bias (−21 mm month−1), as well
as the smallest mean future rainfall decrease (10%). The
CCSM-WRF and CCSM-RSM-NHM have dry biases of
26 mm month−1 and 56 mm month−1 and mean
decreases of 25% and 16%, respectively. Notably, the
simulation with the smallest bias differs for each life
zone. Consistent with temperature, the uncertainty in
the magnitude of the drying becomes larger for the wet-
ter life zones, see Table 3 for regional comparisons. This
is likely because there is more uncertainty as the repre-
sentation of clouds and precipitation become increas-
ingly important for wetter regions. The increased
uncertainty is likely associated with local feedbacks in
the model such as evapotranspiration and recycling of
water. For instance, comparing projected changes in the
diurnal temperature and precipitation (Figures 12 and
14) provides some insight. CCSM-WRF has the largest
amount of drying and associated with larger decrease in
afternoon precipitation. The reduced afternoon precipi-
tation favours a relative increase in temperature. On the
other hand, CNRM-WRF has a smaller amount of dry-
ing and associated with a smaller reduction in afternoon
precipitation. The smaller projected change to afternoon
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precipitation is associated with less warming during the
afternoon. The larger projected reduction in precipita-
tion in CCSM-WRF reflects a more pronounced
decrease in the frequency of extreme rainfall events
(Figure S5) compared to CNRM-WRF. Such details in
the local physical processes are important to understand
and are currently being explored for a future
manuscript.

3.2 | U.S. Virgin Islands

The U.S. Virgin Islands (St. Thomas, St. John, and
St. Croix) generally have subtropical dry forests at lower
elevations and subtropical moist forests at higher eleva-
tions (Brandeis et al., 2009). The within-island climate
gradient is largest for St. Croix, the largest of the
U.S. Virgin Islands, with a notable transition in forest
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type from subtropical dry forests on the eastern/southern
side of the island to subtropical moist forests on the
northwest side of the island. Below we focus only on the
WRF simulations because these simulations themselves
provide insight into some consistencies but more impor-
tantly uncertainties in the model projections.

Figure 15 shows the simulated annual average maxi-
mum temperature from the WRF simulations compared
to the station climate normals. Both WRF simulations
illustrate larger maximum temperatures over land at the
lowest elevations, but the magnitude is cooler than the
station observations by 1 to 3�C. As for minimum tem-
peratures, the largest cooling is found at the higher eleva-
tions but there is also a notable cold bias (Figure S6).
Figure 16 shows the simulated historical annual rainfall
totals from the WRF simulations compared to the station
climate normals. The models simulate a distinguishable
windward-leeward effect. The annual rainfall climatology
in CNRM-WRF is closer to observations compared to
CCSM-WRF, which has a notable wet bias on the wind-
ward side of the islands. Despite the wet bias in CCSM-
WRF, the within island rainfall spatial characteristics are
similar to that of CNRM-WRF. The station observations
show similar windward-leeward rainfall characteristics.
The exception is the drier climate for the far eastern edge
of St. Croix, which is unresolved at 2-km horizontal grid
spacing.

The island average projected change in the maxi-
mum temperatures is 1.1–1.3�C for CNRM-WRF and
CCSM-WRF, respectively (Figure 17). The within-
island temperatures are projected to increase faster
than the surrounding water. There are some intriguing
similarities between the simulations in the placement

of the largest projected warming for maximum temper-
atures. There is larger warming on the southern side at
lower elevations within St. Croix and for some of the
highest elevations within St. Thomas and St. John.
Similar spatial changes are seen for minimum tempera-
ture (Figure S7).

The projected decrease in the annual precipitation for
the U.S. Virgin Islands is 6–12% (Figure 18), which is less
than in life zones of Puerto Rico. Unlike the temperature
projections which indicate similar locations for the maxi-
mum increase in temperatures, the rainfall projections
are not in agreement for the location of the largest projec-
ted reductions in precipitation. CNRM-WRF projects
more drying on the southern (leeward side) of the
islands, while CCSM-WRF shows the largest drying on
the northern (windward side). These results suggest that
the model biases translate into differential climate sensi-
tivity. For instance, the largest precipitation reductions
on the windward side of the islands for CCSM-WRF are
co-located with a larger wet bias. Overall, these results
emphasize the uncertainty in projected changes across
the U.S. Virgin Islands and demonstrate that projected
precipitation changes are unlikely to be uniform.

4 | CONCLUSIONS AND
DISCUSSION

The dynamically downscaled simulations in this study
provide additional information by resolving precipita-
tion gradients between life zones and of significant
value to those interested in climate change for the
islands. All simulations project substantial increases in
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FIGURE 9 Same as Figure 4,

except for the subtropical moist

forest. The projected changes are

significant at the 95% confidence

level using the Mann–Whitney U-test
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FIGURE 10 Same as Figure 5, except for the subtropical moist forest. Except for GFDL-RSM-NHM (p-value = 0.05), the projected

changes are significant at the 95% confidence level using the Mann–Whitney U-test (p-values. < .001)

TABLE 3 Precipitation bias and

change for each high-resolution RCM

simulation averaged over the dry Forest

(DF), moist Forest (MF), and wet

Forest (WF)

GCM

Precip. bias (mm/month) Precip. change (%)

DF MF WF DF MF WF

CCSM-WRF −38 −19 −26 −20 −23 −25

CCSM-RSM-NHM −37 −44 −56 −18 −17 −16

CNRM-WRF −24 −27 −21 −19 −9 −10

GFDL-RSM-NHM +121 +216 +232 0 −8 −6
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temperature and decreases in precipitation for all life
zones within Puerto Rico by 2050. In the subtropical
dry forest, more persistent mean annual warming
(1.2–1.4�C) and persistent drying (reduction in mean
annual rainfall 18% to–20%) is projected. However, the
dynamically downscaled simulations suggest increased
uncertainty in the mean warming and drying for the
wetter life zones. For the moist forest, the mean

projected warming is 1.1–1.6�C, while the wet forest is
1.1–1.7�C. The mean precipitation is projected to
reduce by 9–23% in the subtropical moist forest and
10–25% in the subtropical wet forest. Current research
is underway to better understand the physical drivers
with unknown effects on the mean change, especially
precipitation, for the wetter life zones within Puerto
Rico. Notably, the wetter life zones are found at higher
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FIGURE 11 Same as Figure 3, except for the subtropical wet forest. The projected changes are significant at the 95% confidence level

using the Mann–Whitney U-test (p-values < .001)
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elevations, which suggests a possible “elevation buffer”
to the subtropical precipitation decline. The existence
of this feature would alter local climate change adapta-
tion efforts within the island.

For all life zones within Puerto Rico, a mean warming
well below 2�C—a global warming target—results in
marked increases in minimum and maximum tempera-
tures at 2050 relative to the historical period. As such,
all simulations project more than 50 days of unprece-
dented maximum and minimum temperatures in each
future year with some exceptional years exceeding
200 days. The simulations also agree that there are small
changes in the frequency of extreme rainfall within
Puerto Rico for all life zones at 2050. This study corrobo-
rates Bhardwaj et al. (2018) in that changes to extreme
rainfall frequency are robust and not sensitive to driving
model, the regional climate model, or the regional cli-
mate model configuration. However, the dynamically
downscaled extreme rainfall frequency projections differ
from the statistically downscaled projections for Puerto
Rico (Hayhoe, 2013). We hypothesize that the difference
between the two downscaling methods results from sim-
ulating the complex feedbacks associated with compet-
ing drivers of change, the dynamic contribution that

supports more drying and the thermodynamic contribu-
tion that supports an increase in the atmosphere mois-
ture capacity and extreme rainfall (Pfahl et al., 2017).
Hence, more work is needed to understand differences
between high-resolution dynamical downscaled simula-
tions that are at similar spatial scales as that of statisti-
cal downscaling, especially for places with fewer
observations.

The projected warming for the U.S. Virgin Islands
(1.1–1.4�C) is comparable to Puerto Rico. The down-
scaled simulations depict the largest maximum tempera-
ture change for the southern side of St. Croix and for
some of the higher elevations within St. Thomas and
St. John. The simulations also project a reduction in
mean annual rainfall of 6–12% for the islands, which is
smaller than for Puerto Rico. However, unlike for tem-
perature, there is considerable uncertainty in the location
of the maximum drying (e.g., more drying for the wind-
ward or leeward side of the islands).

Finally, this study highlights modelling challenges for
traditional dynamical downscaling of global climate
models for the U.S. Caribbean. One consistent issue is a
cold bias for all life zones within Puerto Rico and for the
U.S. Virgin Islands. The cold bias is persistently larger for
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FIGURE 12 Average diurnal

cycle of temperature (�C) for the
subtropical wet forest. The historical

and future are shown as black solid

and dashed lines with temperature

difference in red respectively for

(a) CCSM-WRF, (b) CNRM-WRF,

(c) CCSM-RSM-NHM, (d) GFDL-

RSM-NHM. The plotted range for

temperature is colder for GFDL-RSM-

NHM-GFDL than for the other

simulations. The projected changes

are significant at the 95% confidence

level using the Mann–Whitney U-test

(p-values < .001)
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maximum temperatures compared to minimum tempera-
tures. There is also a persistent dry bias for all simula-
tions within Puerto Rico except GFDL-RSM-NHM. With
traditional dynamical downscaling, the global model
biases remain, such as a cold SST bias that was acquired
from the global climate model SSTs. The cold bias in SST
helps to explain the cold bias in near surface temperature
within the islands, which may also be contributed to a

persistent dry bias within Puerto Rico. For instance, a
warmer Atlantic is associated with increased convection,
especially during the rainy season (Wang et al., 2008).
The regional climate model's performance does not dis-
credit the future runs and projected changes (Santer
et al., 2009; Knutti et al., 2010), but it limits some inter-
pretations and raises some important questions that can
may help improve model performance. For instance, the
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presence of a cold and dry bias can adversely affect
threshold statistics of ecological relevance, such as the
number of days above 32�C or daily precipitation exceed-
ing 25 mm. While the cold bias in SST raises questions

on its influence on the dynamically downscaled projec-
tions. Follow-on research will explore the cold bias in
SST to better understand the impact on the projected
changes.
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except for the subtropical wet forest;

(a) CCSM-WRF (p-value < .001),

(b) CNRM-WRF (p-value = .484), (c)

CCSM-RSM-NHM (p-value < .001),
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FIGURE 15 Annual average

maximum temperature (�C) for
St. Thomas and St. John (top) and

St. Croix (bottom) from the WRF

historical climatology (1986-2005)

with weather station climate normals

(1981-2010) overlaid in text.

Contours represent the model

elevation starting with the first

contour at 50 m (not labelled)

BOWDEN ET AL. 19



FIGURE 16 Annual

precipitation (mm) for St. Thomas

and St John (top) and St. Croix

(bottom) from the WRF historical

climatology (1986-2005) with

weather station climate normals

(1981-2010) overlaid in text.

Contours represent the model

elevation starting with the first

contour at 50 m (not labelled)

FIGURE 17 Projected change

in annual average maximum

temperature for St. Croix (top) and

St. Thomas and St John (top) and

St. Croix (bottom) from the WRF

realizations for RCP8.5 at mid-

century (2041-2060) for CCSM-WRF

(left) and CNRM-WRF (right).

Contours represent the model

elevation starting with the first

contour at 50 m (not labelled)

FIGURE 18 Percent change in

the annual average precipitation for

St. Croix (top) and St. Thomas and St

John (bottom) from the WRF

realizations for RCP8.5 at mid-

century (2041-2060) for CCSM-WRF

(left) and CNRM-WRF (right).

Contours represent the model

elevation starting with the first

contour at 50 m (not labelled)
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